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Abstract--A transient analysis of reaction-diffusion equations ass,~ciated with the model reaction of Pri- 
gogine and Lefever (Brusselatur model), has been perfarrued. For low systenl lenqths and for fixed boundary 

conditions, steady state solutions with lhe k:,w amplilude are unstable. For zero flux boundary c~,tsditions the 
multiplicity ,.d symmetrie solmions wi:h the same wave i]u'll}f)er may exist and the majority of them are 
unstable. The diffusion of initial components reduces relaxalion (~scillations in space fur fixed as well as zero 
flux boundary conditions. The amplitude of the oscillati,.ms il!c~eases as the diffusion coefficient of the inilial 
componenl decreases. For conditions of relaxation c, scillatio[~s the spatial profiles result m single or multiple 
propagating fronts. 

High system lengths for both zero flux and periodic boundary conditions, may give rise Iu a multipeak in- 
coherent wave patterm Fc, r periodic houndary conditk.,i~s lhe mutliplicity of waves has been r 
Numerical simulation ,~>f two-dimensiunal spatial structures reveals the exislance nf certain similarities be- 
tween the tree- and tw.-dimensional t:~ses. 

INTRODUCTION 

It is widely known that the inteta,.tiol~ c,f rea,.:tM[~ 
and diffusiun in open systems c, peratiHg far frtms the 
therrnodynamic equi l ibr iun] gives rise to, many inler- 
esting p h e n u r n e n a  such as spatially h o m o g e n e o u s  
perio(:lic solutions, nonhomogeneous perk.,dk st,lo- 
tions, travel l ing waves, shock structures, and so fl,rth 
[1-3]. Prigugine and NU.,.dis [4] [save terrued flses,e 
structures arising m ~ea,.tiun-,.liffusi~n syst.:'ms as dis- 
sipali\{~ strLiClslres. Si~ce the classical pal)er by [)rig(,- 
glide al!d Xicolis iu 1967 [5], Ihe ~.dume uf l i teralure in 
Ihis l ield has been growing steadily. The reacli{m-dif- 
fusic,u equad(J~s coupled wiflL appruf)riate kiHeIic ex- 
pressions have been shu,a i~ t{, ser'.u as s in [)[e models 
of a number {)f bi{)lugical l)hel!olnel]a al!:l slbay alsH 
expiate sinfiiar phes!ousep.a m ma.m. Hther f ieMs 

The occurrence ~f mult ip le stabh, s(dqliOl!S fur th,Lt 
Bru.sselator chemical s!elwt,rk lsas l),vets ai~.ai}:tiual]i,, 
predicted via the bifurcatioi! the~rv aI?d cosffittm,,I 
I~unLerkally bv Herschkt~wilz-Kaufnlal~ [it and Nic~lis 
et al. [4]. For this m~tlel lhev I]aw' rep{,rled ns[]llil)]{' 
stab:e s',.mn/etrk' al!d asv]]H]]etric steady state stdu- 
liol'~S, h~,n]ugene{,us periutlic suhltiui{s aim Ira\'eliu G 

waves in one dimension whi le for a lwo-dis3]en,'~oi~a[ 

"Author to wh~;m corresptmdence should be addressed 

geometry  like a cycle they have ob ta ined  rutafing 
waves and t]onhonst;,gene,.~us periodic solutions. Kti- 
bkek  et al. [6] have numerical ly cr a typi- 
cal bifurcation diagram for this netwu, rk by employii~.g 
a continuation alg,.~rithm, lu /heir study the pr imary 
bifurcati()n pc, ints were located analyt ical ly whi le  tke 
space profiles were computed nulnericalN. Tke cal(u- 
lated sleadv state profiles were lested for stabil i ly and 
asympttJtic behavior. The Brusselat,Jr chemical n.'.q- 
v.,'ork []as been sllbjecle(t to many  theoretical ii!vesli- 
gations since il exhibits many inleresling phenumel]a 
a]td is easy to analyze because  of a single hum,.)geuu- 
uus (thermodyl~amic) sdu t i un .  Iu the n]ajurily uf pre- 
vious sludies the hqtiaI components A and B are as- 
sumed t(~ be mai[dained uniform thruugh()ut llte svs- 
/el]l [)~ s o n s u  external i] lechanisnL A realistiu desctip- 
ti(~n, hi~wewtr, requires the inclusiup, of diffusi~.~n of 
these (u, mpopenls. In It]is l;aper, thereft~re, we t:um 
sider a m(Mified l~r',isselahJr moci,vl which in.eludes lhe 
difftlsir of initial (.'(,,ttspottel'.ts. l lere ',',,re a r c '  gc, ing It, 
invesligale lhe sfabili ly (~f compuled steady state suhl- 
l ious via hansienl ar, alysis, o~nsider ti le effect uf tlif- 
ftlSiol! l~f ini l iai c~mfl),,neuts Ol~ the peri~,dicity of sulu- 
li{d!s, slu(b. !he equwalei!ce belween t,ne- and l',.:u- 
tihtsensi{~n41 gcxnnelries, al]d rel),Jrt un s(![sI.L, nHsileli- 

eafb, ~4"served pert .die solt]lius!s i p . . h e -  and lw,~- 
sj)a(( ~ din]ensh H!.s. 
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Dissipative Structures in a Reaction-Diffusion System 189 

BRUSSELATOR MODEL IN REACTION- 
DIFFUSION SYSTEMS 

The "Brusseiator" model originally proposed by 
Prigogine and Lefever [7], corresponds Io the follow- 
ing tr imolecular scheme. 

A ~ X  

2X - Y ~ 3 X  

B~-X ~3" 

X ~ E  {1) 

As mentioned earlier, in the majority of previous 
studies the concentrations of initial components A and 
g have been assumed to be maintained uniform (e.g. 
large excess ,.)f A and B or infinite diffusk)n c()effi- 
cients, D A ~ oo and DB~ co ). In the present investiga- 
tion, we include the diffusion of component A but treat 
B to be uniform. After neglecting all the reverse reac- 
tions and setting the rate constants to unity, following 
reaction-diffusion equations are obtained : 

OA/Ot = - A + D ~ w 2 A  (2) 

OX/COt=A+X=Y - (B ~ 1;X + DI,~2X {::~} 

OY/a t  = B X - X ~ Y -  D,.v'~Y. (4) 

In these equations, v 2 is the Laplacian operator 
while D x and Dyare the diffusion coefficients for X and 
Y, respectively. The following boundary conditions are 
considered : 

Ca) Fixed bounda~ conditions 
For a one dimensional system : 

z - 0 .  L ; t > 0 : X = X o ,  Y = Y o .  (5} 

For a two dimensional geometry: 

x = 0 , 1 : y = 0 , 1 ; t > 0  : X = X o ,  Y=Yo .  (6) 

(b) Zero flux boundary, conditions 
For a one dimensional system : 

z = 0 , L ;  t >0 : O X / O z = O Y / O z = 0 .  i7) 

For a two dimensional geometry: 

x - -0 .1  : OX/cOx=OY/cox=0,  (81 

y- -0 ,  1 : O X / O y - O Y / O y = O .  (9) 

(c) Periodic boundary conditions 

X',0, = X  ,',L:~ OX OX ' ~ z  (01=  ~gz (L), (10 

cOY cOY ,L). {11/ 
Y!0,=Y~LI: .  ~zz (01--Oz 

For these boundary conditions we have considered 
the one-dimenskmal system only. Further, as is ap- 
parent from the physics of the problem this type ul 

boundary, condition does not allow for inflow and out- 
flow and hence we cannot consider the diffusion of 
component A. 

NUMERICAL METHOD OF SOLUTIONS 

Eqs. (2)-(4) represent a set of coupled nonlir!ear 
parabolic partial differential equations. However Eq. 
(2) is separable from Eqs. (,3) and (4) and can be solved 
independently to obtain the following steady state 
solution in one dimension. 

(z -  L/9 

A(z i - -Ao .  .......... ~ L l . . . . .  �9 (12) 

Eqs. (3) and (4), however, are coupled by the non- 
l inear source term and this necessitates its soluti~,i! 
numerically. In our numerical calculations, we have 
used the Stor[ner-Numerov {iuite difference approx- 
imation for the space derivative. This method has 
large (h 4, k 2) accuracy but needs only three mesh 
points in space. The details of this technique with ap- 
plications has been described elsewhere [8]. 

Following extrapolativp, formula has been used 1~, 
evaluate the source term at dine grid (j-~ 1/2) in the 
Crank-Nicholson method 

X J~ ' '==  1.5X ~ - 0 . 5 X  ~'  (13) 

The method of solutio0 also features automatic l i l i le 
slep adjuslment which is done un the basis uf errur bc- 
Iween tile predicled aud the exlrapolaled values fl,r 
the source ternl. For the case of periodic [)o/mdarv 
conditions, the finite difference scheme inlroduces ar~ 
off diagonal elen]ent in the tridiagonal structure and 
tile fast solution inethod of Evans [9} I]as been used. 

Fur two-dimensional problems the conventiul!al 
five-point difference scheme requires sohltiol! ~f a 
banded malr ix structure which is expensive. We ha: c 
therefore used the ADI (Al{ernate direclkm impH<.il) 
method to cah'ulate tile space prufiles in. tvvl:) diiil(q!- 
sions. All lhe reported caiculati(,ns have t:ee]~ per- 
formed on CDC" CYBFR 173 machine. 

RESULTS AND DISCUSSIONS 

The followif~g parameter values have bee~] used i~ 
numerical calculations. 

l. Sleady state solutions: A : 2.0, B -  4.6, Dx:  
0.0016 and Dy = 0.008. D A equals 0.1 and 0.02 for fixed 
and zen~ flux boundary conditions, respectively. 1. is 
reported with each figure 

2. Peri~Jdic solulions: A 2.O, D x 0.008 al]d [)) 
().004. The variation in l.. B al!d D A is repr ah,[!.,Z 
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Fig. I. Spatial profi les  for X. ---.Steady state solution ; 
- - transient  simulation. 
Profile [ 2 3 4 5 
Length 0.1 0.17 0.18 0.2 0.3 

with each figure. Values of parameters other than pre- 
sented above are indicated in the description of fig- 
ures. 
I. S tab i l i ty  o f  s t e a d y  s t a t e  s o l u t i o n s  

The bifurcation diagrams which indicate the num- 
ber and the nature of solutions of a reactior>diffusion 
system are usually constructed from the steady slate 
analysis of Eqs. (2)-(4). A typical bifurcation diagram 
for the present system has been construcled by Hla- 
vacek e ta [ .  [10]. The solutions obtained from the 
steady state analysis need not be stable and, therefore, 
their stability must be investigated. For thi~ purp<~se 
we take these steady state solutions, perturb them by 
about 1% and study the transient behavior of the sys- 
tem. 3"he solution obtained at t ~ oo is considered as 
the asymptotic solution. Some of the results obtained 
are shown in Fig. 1. The dashed lines represent the 
solutions calculated from the steady state, analysis 
while the solid lines represent the corresponding 
stable steady state solutions obtained at t -~ oo. It can. 
be observed from this figure that unstable symmetric 
solutions (dashed curves 1, 2 and 4) give rise to stable 
symmetric solutions with a phase shift. The unstable 
stead~ state solutions (dashed lines 1 and 2) form a 
part of an isolated branch on the bifurcation diagram 
(Fig. 4 in reference [10]) and are very close to the ther- 
modynamic solution for fixed boundary o~ndilions. 
Thus the solutions with the low amplitude (or devia- 
tions from the timrmodynamic branch) seem Io be 
unstable and the evolution process under these condi- 
tions will attract the trajectoD' to stable high amplitude 
solutions. We have further analyzed the stability of 

Table I. Comparison of exact  and approximate val- 
ues  

Profile 1 Profile 2 

x ,R x ,~ 

L:0.10 6.00 5.56 1.20 1.34 
L:0.17 0.60 0.78 3.00 2.79 

these solutions by the one point collocation method 
Ell]. The advantage of this method is it converts a 
system of partial differential equations to ordinary dif- 
ferential equations which are easier to deal with than 
the original partial differential equations. In this 
method, we place one internal point at the center of 
the system and write down the finite difference equa- 
tions for this point. Since the boundary points are 
fixed, this results in a single differential equation, 
which can be analyzed easily to obtain approximate 
results. On using the Stormer-Numerov finite dif- 

ference approximation, the differential equation de- 
scribing the center point can be written as: 

ctX~. D~ IX ~- 2X~ +Xb) + I0 [A~+X'.Y~ 1o = 12 ~ 

-- ,iB ~ l)X~] (14) 

',,,,,here the subscript m denotes the value of the vari- 
,able at tile center puint while subscript b denotes the 
value al lhe bounda.ry. Similar equation can be ob- 
tained for Y,,. Thus, we now have an initial value prob- 
lem to integrate. By setting dX,.,,tdt = 0 and dYm/dt = 
0, one can ubtain the steady state values for the center 
point by solvin.g tire resulting nonlinear algebraic 
equations. On using this approacb we obtained the fol- 
lowing approximate values for the center point which 
are given in Table 1. In lhis table X indicates the value 
obtained by solving the full partial differential equa- 
tions while X denotes the value obtained from the one 
point collocation. "]'he agreement is satisfactory and 
one can use this informalion as the first approxima- 
tion. It was noticed earlier that low amplitude solutions 
are unstable for fixed bounda~ conditions. However, 
they have been found to be stable fur zero flux bound- 
ary conditions (dashed line 3). For zero flux boundary 
conditions with L = 0.2 Hlavacek et al. [10] have re- 
ported seven steady state profiles. Three of these pro- 
files are symmetric with two solutions having the same 
wave number but different amplitudes. One of these 
solutions is unstable (profile 4) and the stable solution 
is observed to be a symmetric solution with a phase 
shift. ]t, therefore, appears that steady solutions with 
the same wave number but different amplitudes may 

July, 1990 
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Fig. 2. Periodic solution profile for X. 

L = 0.4, B= 5.4, DA : 0.1. 
Profile I 2 3 4 
Time 11.80 12.72 13.92 15.15 

not be stable at low system lengths. Profile 5, which 
represents a high wave number  (wave number  equal 
to three) solution for zero flux boundary conditions is 
also unstable and the steady solution at t ---)oo has 
been found to have a wave number  of one. 
2. Per iod ic  s o l u t i o n s  in o n e  d i m e n s i o n  

Depending upon the values of the kinetic and dif- 
fusion constants and the system size L the solution 
bifurcating from the thermodynamic branch could ei- 
ther be a stable steady state or a periodic solution. 
Such periodic solutions may give rise to concentration. 
waves. Pismen [12] in describing the bifurcating 
waves has proposed that in a one-dimensional system, 
depending upon initial conditions, the periodic solu- 
tion may either be a propagating wave in an infinite 
system or a standing wave for a finite system, an 
ordered combination of standing waves or an incoher- 
ent pattern. Nicolis el ah !3] have analytically pre- 
dicted and numerically observed the existence of 
standing and travelling waves for the Brusselator 

model. 
These general results obtained [rom the bifurcation 

theory may not be applicable when diffusion of initial 
components  is also considered Since trivial solutiun.s 
(X 0 = A and Y0 = B/A) for the present case do not exist, 

it also excludes the possibility of homogeneous perk~d- 
ic solutions. In such a case, the first bifurcating solu- 
tion, therefore, is space dependent.  This solution is 
sy:mnetrical and represents a standing wave. F~)r II~e 
chosen parameters (A - 2.0, B = 5.8, D~ = 0.008) the 
so ution at low bifurcatiou lengths (L up to 0.6) was 
always symmetrical for fixed bvundary conditions. 
Various initial non-uniform profiles were tested to see 
whether  asynm~etric solutions exist. However, iv, each 

; ,  ; ,  ,',, & , 

0 4 8 12 16 20 24 28 32 :36 
Time 

Fig. 3. Oscillations of the center point. 
L : 0.6, B : 5.4, . . . .  DA--> oo, - -  D A = 0.02. 

IA," i B" 
40 

case, after an initial transient period the solution 
always evolved to a symmetric standing wave. A typi- 
cal solution is shown in Fig. 2. An interesting observa- 
tion was made while studying the effect of diffusion of 
cornponent A on periodic solutions. It was obser~zed 
that the diffusion of component  A alters tile period as 
well as the nature of oscillations. A plot of oscillations 
at the center point of the system is shown in Fig. 3. 
For the sake of comparison, tile case with constant 
A(DA+OO ) is also shown on the same figure. It is ob- 
served flora this figure that when D~--, oo, the oscil- 
lations are fairly regular. However, with the diffusion 
of component  A these regular oscillations change tu a 
period of fairly low and uniform concentration of X 
followed by a s:eep spike. The period elapsed between 
two successive spikes is also the .same. This effect 
seems to be quite similar to the concentration oscil- 
lation obse~'ec! for the Belousov-Zhabotinsky reaction 
[13]. It, therefore, appears that the nonunifom'~ distri- 
bution o[ component A gives rise to ruultiple time 
scales in the system. During the period A-B (J~ A'-B i[~ 
Fig. 3, the rate of change of Ihe c~mlponenl X is ~erv 
low and the svstenl appears It, be almost quiescel~[ 
This period of uniformity is followed by a peri~,d ~f 
rapid trausfurmations which invr steep time gradi- 
ents. Such type of phemm'~ena has beei! termed as 
relaxation oscillations. Herschkowitz-Kauh~an and 
Nicolis [141 have also repoiled relaxatiou ,.~s.=illahol~s 
for this mode but they have ar.alvzed only fixed 
boundary condition.s. Tile transient sl)ace profiles ciur- 
ing the period B'-A" are showu il! Fig. 4(a) ~hi le  Fig. 
4(b) depicts the transient profiles il~. the regi:)n A'-B. 
These figures reveal that dnrmg the short Hrne scale 
propagating fr(.,i,.ts are observed which move fmlu the 
bouudarv towards the cen.ter, collide and ultimately 
change tt) a stauding wave pattern, which is carried in- 
to the quieseenl tegiux~. A"-B" as shown in Fig. 4(b). lu 
~Jrder to explaiu the existence of the propagating fnmls 
in the short Hme interval, we can make use of the the- 
ory of prupagati()n of fronts a[~d discontin.uily by Or- 
toleva and D,ss [15]. According h)this theury propa- 
gating fronts a~e observed for s,,stems with kinetics ~)n 

Korean J. Ch. E. (Vol. 7, No. 3) 



192 S.H. KIM and S.C. YEO 

X 

4[. , 

0 0.5 
(a) 

3;7 
i 

0.5 
Z (b) 

Fig. 4. Propaga l ing  fronts  for f ixed b o u n d a r y  condi -  
t ions .  

L = 0.6, B - 5.4. D A - 0.02. 
Profile 1 2 3 4 5 17 7 

Time 20.25 21.66 25.56 29.40 35.76 36.06 36.25 

multiple time scales and possessing multiple homo- 
geneous s ta t iona~ states. Since these phenomena  are 
observed with nonuniform distribution of componem 
A, it is suspected that diffusion of A may cause the 
irltroduction of mult iple pseudo stationao, states al- 
though for the Brusselator moclel with constant A only 
one stationa~, homogeneous stale exists. In order to 
explain the existence of multiple pseudo stationary 
hoFnugeneuus solutions for the Brusselatur rnudel, we 
n/ake use of Fig. 3 and attempt the Mllowing exp[ana- 
tiun. Frun~ this figure it can be inferred tt[al in the 
period A-B the concentration at Ihe center point ahnosl 
approaches zero. Since for a long time the concentra- 
tion profiles remain flat in the central purtiun uf the 
system, the effect of diffusion here car! be neglected, 

In this case our equations becume 

d X / d t = A  t - X ~ Y -  (BZ 1)X I15) 

and 

d Y / d t  = BX - X ~Y. (16) 

In order tu obtain the h(.~moge.l!et~us sc~ltllioF~S we set 
d X / d t -  dY/dt  ~ [) and solve Hie resulting algebraic 
equatiuns which are given as 

A + X2Y - t B g - l : X = 0  (17) 

aud 

BX - X~Y =0.  {i8) 

If X ~ 0 ,  to satisfy Eq. {17}, A z 0 .  If we lake a value uf 
D a -{}.002 and L = 0.4, A at lhe center '-0.{t2. These 
X ~(} satisfies Eq. (17}. Nov,,' frum Eq. (18}ol!e can ub- 
lain X - 0 and X : BtY as the soluliul:s. The rout X 
B/Y furlher shows lhal since B is conslant, al! increasu' 
in X i.,. accumpanied by a correspuuding decrease it! "{ 
which is observed in the sulution ~f full parlial 'difler- 
ential equations fur lhis case. These ulull iple pseud(,- 
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Fig. 5. Osc i l la t ions  of the  cen ter  point .  --.- Zero  flux 

b o u n d a r y  cond i t i ons ;  - -  f ixed b o u n d a r y  con- 
d i t ions .  
Profile 1 2 3 4 5 

L 0,4 0.4 1,0 0.6 0.6 
B 5,4 5.4 5.4 5.4 5.4 

D A 0.001 0.0002 0.02 0.02 0.02 

stationa D' states probably give rise to the propagating 
fronts which are shown in Fig. 4(b). To investigate Ihe 
effect of diffusion of A on the relaxalion oscillations, 
.D A was changed from 0.1 to 0.0002 for zero flux as 
well as fixed boundary conditions and the observed 
oscillations have been reported in Fig. 5. Tile dashed 
Jines in this figure show oscillations for zen) fhJx 
boundary conditions while lhe sulid hnes are for fixed 
boundary conditions. This plot reveals that for the 
:same parameters, the oscillation periud for fixed 
boundary conditions is almost twice tim,. thai for zero 
:flux bum~dary conditions. Also, tl~e comparison cd Ira, - 
files 1 and 2 indicates that as D A decreases, tile period 
,.Jr oscillations as well as the amplitude of uscillaliuns 
increases. Huwever. in all cases, Ihe nature of II~_, 
space profiles remains the same. It was alsu nuticed 
Ihat fur the chuse[' parameters fixed boundary c, mdi- 
fiop.s always resulted in symmetrical structures while 
for zero flux boundary c~l!ditiuns asymmetric space 
profiles are pussibie. A lypical transient profile for zeru 
flux boundary conditions, il lustrating the development 
of a propagating front from a standing wave is shown 
in Fig. 6. Another observation made in this study indi- 
c'ales Ihal wile,. D A -~ co, fur the systems of low size all 
space point,,, fall o[1. the same Ninil cycle. Hc, we\er.  
when [)~ assumes low values (say 0.002), two distincI 
but ip.lerwuven limit cycles are observed for the center 
and the bounda~'  points. If we extrapulate the above 
mentioned arguments, it can be said that when I) A 
assumes very low values, the development uI shuck 

July ,  1990 



Dissipative Structures in a Reaction-Diffusion System 193 

8 - 

I 

4 

2 
2 

I 

0 0,5 

(a) (b) 
Fig. 6. Propagat ing  fronts  for z e r o  flux b o u n d a r y  

condi t ions .  

L ~ 0.6, B = 5.4, D A = 0.02. 
(a) Profile 1 2 3 4 5 

Time 0.1 4.6 5.82 6.03 6.13 
tO) Profile l 2 3 4 5 6 

Time 735 7.62 7.82 8.02 807 8.21 

0.03 ,~ B A B' A" 
0.02t- ' 
0.0 P ~ L ~ L  1 , ~ , J i A 

�9 I t; 8 l0 12 14 16 1S 20 
Time 

Fig. 7. Osc i l la t ions  of the  c e n t e r  point .  

A = 1 7, B = 4.28, L ].O.D x=0 .0 l ,D~  0.0, l).4 
0.02 

struclures from seemingly quiescent  n tedmnt  might be 

observed.  As ment ioned earlier, a nouunih.,rtn distri- 
bution of the cCmlponent A causes s imul taneous pt(J- 

pagali,.m uf fronts either boundaries Iowan]s the cen- 
ter. We have also calculated for a different set uf par- 
ameters and initial conditions, a different type of relax- 
atiun oscillations where the amplitude of oscillations 
for the cetner point is quite small as shown in Fig. 7. 
For this case we observed a single propagating front 
moving from left to tire center  for a short period duriug 
the phase  A-B. which is shown  in Fig. 8(a), while an 
identical front moves from the right to the center dur- 
ing the phase B'-A" for another short interval as 
depicted in Fig. g(b). These fronts, however, do nc, t 
reacP~ the center but disappear in between It was also 
noticed that an increase in the system dimension or a 
decrease in diffusion coefficietRs increased the phase 
difference between various spatial points. As can be 
expected, a not+uniform distribution of the compot~ent 
A aifects stability and the reported bifurcation analy- 
sis r the Brusselator model by Herschkowitz-Kaufman 
{1] ~s nut applicable here. The bifurcation theory for 

Pr oti le l 2 3 4 
Time 7.93 7.99 8.09 815 

Z 1.0 
(a) 

5.90 

4.44 

2.9(] 

t .48 
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5.90 

4.44 
Profile 
Time 

:x: 296 

1.48 

o--__ 
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l 2 3 
8.88 8.93 8.98 

Z 
(b) 

9. 

1.0 

Fig. R. Single  p r o p a g a l i n g  front for z e r o  f lux bound- 
a r y  condi t ions .  

Parameters same as fur Fig. 7. 

D A -+ oo predicts a homogeneous  stable solution for the 

parameters  A -= 2 O, B = 5.4, L = 0.4, D x = 0.008 and 
D y - 0 . 0 0 4  for constant  boundary conditions.  How- 
ever,  when  D A = ~).t, the same parameters  yield a pe- 
riodic solution with s tanding wave characteristics. Our 

one  point collocalion approach did show this stability 
change  and the solution of the corresponding t~rdinary 

differential equat ions showed oscillations for the cen- 
ter point. 

Our numerical  exper iments  f(n the periodic bound-  
ary condit iuns resulted in a travelling wave and multi- 
plicity of s tanding waves.  Fig. 9 illuslrates a typical Iwu 
s tanding waves  pattern. It can be easily observed that 
each is a nonl inear  wave arid the two waves  are oul uf 
phase with each other. The duratk>u fear which each 
wave is observed during a period, however, is n~,t Ihe 
same. For high values of L or low diffusion coefficients, 
we have observed periodic solutions of increasit~g 
complexity.  A typical pu~iodic solution is shown in Fig. 
I0 which describes a muit ipeak standing wave  with in- 
coherent pattern. In general, it has been noticed tirol 
multipeak periodic solutions are possible only at high 
system lengths. Also the periodic solutions for zero 
flux u+ periodic boundary cundilions at high system 
lengths have similar characteristics. 
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3 4 

5 

2-- 

l 

I 

m 

2 

t 

i I 
0 0.5 

Z 

Fig. 9. Two standing wave patterns for periodic 
boundary conditions. 
A = 2.0, B = 54, D x = 0.008, Dy  = 0.004, L = 2.0. 
Profile 1 2 3 4 5 
Time 2.74 3.44 4.78 5.58 6.24 

I 
0.5 
Z 

Fig. I0. Incoheren! wave pattern for zero flux 
boundary conditions. 
A = 1.7, B = 4.28, L = 100, Dx = 1.0, Dy - 0.0. 
Profile 1 2 3 4 5 
Time 0.1 1.2 2.57 2.82 3.48 

3. Diss ipat ive  structures  in two-dimens ions  
{rectangular geometry)  

The theory of linear stability analysis indicates that 
the bifurcation from the homogeneous stable solution 
takes place when at least one eigenvalue of the matrix 
[A-),nD] has a positive real part. The matrix A for the 
Brusselator model can be expressed as 

OF DE 

OX 
A --- (19) 

DG DG 
ax ~ 

where F and G are given as 

F = A + X ' Y -  ( 'B+I )X  and  G = B X - X ' Y .  (20) 

All the required derivatives are evaluated at X 0 and Yo 
which are the solutions to F = 0, G = 0. The matrix D 
is a diagonal matrix of the diffusion coefficients and ~.. 
are the eigenvalues of the following scalar equation 
[16]: 

~ ' X + . ~ . X = O  for X~s (21) 

For the one-dimensional model A, are given by n2~-2/ 
L 2 for both zero flux as well as fixed boundary condi- 
tions where n =:0,1,2,--. and n =  1,2,... for zero flux 
and fixed boundary conditions, respectively. For lhe 
two-dimensional rectangular geometry ~.,~ are given by 

~..= x'  (m~+6.~n2)/L ' (22) 

where 6" is the aspect ratio (=height / length)  and m 
and n have the same values as n for the one-dimen- 
sional system. From the analysis mentioned above, 
one  clearly observes that when 6 = 1 and m = 0, the 
bifurcation pattern of one- and two-dimensional sys- 
tems is the same',. In other words, the parameter values 
for which the one-dimensional system shows bifur- 
cation will also cause the bifurcation for the two-di- 
mensional case. In our numerical calculations we 
have, therefore, used the same parameters as those us- 
ed for one-dimensional calculations. One can further 
observe that if in the reaction-diffusion equation 

' X  8X = F + D , I ~  + 8 ' X  
Dt ~ F  ) (23) 

one of the second derivatives is set to zero, the system 
will be reduced ~o the one-dimensional description. In 
such a case, all one-dimensional steady state solutions 
will be the solutions in two dimensions with no gradi- 
ent along x and y direction depending upon which- 
ever second derivative is set to zero. We have tesled 
this observation for the zero flux boundary condition. 
For L = 0.3 and 6"= l, we have calculated a steady 
state solution in one dimension and constructed a two- 
dimensional solution starting from it. The calculated 
steady state solution and the corresponding one-di- 
mensional solution are shown in Fig. 1 1. For this case 
we also calculated some additional steady state solu- 
tions in two dimensions by knowing the one-dimen- 
sional profiles. Variation of the aspect ratio does not af- 
fect the qualitative as well as quantitative nature of 
these solutions as is apparent from the analysis. It 
should, however, be noticed here that the above men- 
tioned analysis applies only to the case when the com- 
ponent  A is assumed to be constant (DA-' oo ). When A 
is distributed nonuniformly, the resulting steady state 
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3 52[- . . . . . . . . . . . .  

! 

U.O."I ~- . . . . . . . . . . .  ',~ 
L . . . . .  I : F -]-~ 

, 0.3 
(0.3 xO.1) 

,' - 0 . 3  , 

Fig. I I. Two  d i m e n s i o n a l  a n a l o g u e  of  one  d imen-  
s iona l  s p a c e  s tructure .  
L = (0.3 • O.l). 

0.7,11- . . . .  ~ - - _ : ~ _  ~ ' " ~ ' 0  75 . . . . .  l . . . . . .  ~ l 
/ i--0.I--4--0.2 ' i ' : _~u.j___cL.~_~,~ k r l  ~ 

(0.2 xO.1) (0.1 xO. l )  

(a) (b) 

Fig. 12. Symmetr ic  and a s y m m e t r i c  s p a c e  struc- 
tures  in two  d i m e n s i o n s .  
(a) L = (0.2 x O.I}; (b) L : (0.1 x 0.I). 

0.7 ~ , ~ 1 / ~ o . 2  ~ /  " 

(0.2 x O. 1) (0.2 ~ 0.2) 
(a) (b) 

Fig. 13. C o m p o s i n g  s o l u t i o n s  in two d i m e n s i o n s .  
(a) L -  (0.2 • O.l); (b) L : (0.2 • 0 2 )  

solutions are qualitatively similar but quantitatively 
di f ferent .  The t w o - d i m e n s i o n a l  solutions obtained 
from the one-dimensional  profiles are termed as I-D 

analogues.  Apart from these 1-D analogues we have 
also calculated some other  symmetr ic  as well as asym- 
metric solutions. Some of these are reported in Fig. 12. 

The reported asymmetr ic  solutions are found lu be 
mirror  image of one  another .  Further, by using the 

symmetr ic  properties, we can obtain four steady-states 
from one  solution. Another  interesting property ob- 
served for zero flux boundary  condit ions was that of 
compos ing  solutions for systems of high size knowing 

the steady state solutions for the low size. A typical 

t = 4.99 t = 5.63 

Fig. 14. Two d i m e n s i o n a l  a n a l o g u e  of  h o m o g e n e o u s  
per iod ic  so lut ion .  
L : (0.2 x 0.l). 

t = 10.66 

t = 12.02 
3 . 9 3 " ~ ~ ~ . -  3.38 

, i i 
[ ! 1 I 1 . 5 4 " ~ ~ " ' ~ "  

t = 14.08 

1.31 .... I ~ ~  

Fig. 15. Two d i m e n s i o n a l  a n a l o g u e  of  a s tand ing  
wave .  
L = (1.0 • 0.5), 

result is shown  in Fig. 13. Such composing  of solutions 
in one  d imens ion  has already been discussed by Ku- 
bicek et al. [6]. As ment ioned  earlier s ince all one-  
d imens ional  solutions are solutions in two d imens ions  
under  certain conditions,  we could calculate the ana- 
logue of one-dimensional  periodic solutions also in 
two dimensions .  The two-dimensional  analogue of a 
homogeneous  periodic solution is a plane w h c h  goes 
up and down and is shown  in Fig. 14 while the ana- 
logue of a s tanding wave is a vibrating plane which 

moves  up and down as shown in Fig. 15. The calcula- 
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t = 4.58 t = 1.54 

t = 5.17 

Fig. 16. Antisymmetric periodic structures.  
L = (1.6 x 1.0). 

tions also showed that the period of oscillation for the 
one- and two-dimensional cases is the same. Another 
interesting property observed for the periodic solutions 
for high values of L(= 1.6x 1.0) and for zero flux 
boundary conditions was antisymmetry of the periodic 
structure about the central plane. Our calculations 
showed that the structure of the solution in the XY 
plane is diametrically opposite to that about the plane 
Y = Y/2. in other words, if we bisect the solution at the 
center parallel to X axis and rotate one part by ~, the 
resulting structure will be exactly equivalent to the 
remaining portion. A typical periodic solution is 
shown in Fig. 16 which illustrates this point. 

CONCLUSIONS 

As noticed earlier all solution profiles obtained by 
the steady state analysis are not stable and a transient 
approach is required to calculate the asymptotic pro- 
perties. It is observed that low amplitude (or small 
deviations from the thermodynamic branch) solutions 
are not stable for fixed boundary condilions while 
same wave number multiple solutions with different 
amplitudes are unstable for zero flux boundary condi- 
tions. A non-uniform distribution of the component A 
alters the bifurcation pattern and the homogeneous 
stable solution gives rise to a periodic solution. Also,, 
since diffusion of the component A does no'. admit triv- 
ial solution for the Brusselator model, the primary 
bifmcating periodic solution itself is space-dependenl. 
It appears that an inclusion of non-uniform A can 
resuilt in multiple time scales in the system and relaxa- 
tion type of oscillations occur. It has been shown that 
propagating fronts observed in this case probably oc- 

cur because of multiplicity of homogeneous solutions. 
Low diffusion coefficients cause high wave number 
periodic solutions which are of incoherent pattern. 
The equivalence of one- and two-dimensional struc- 
tures can be explained on the basis of lateral uniformi- 
ty in either directions. It is also noticed that additional 
interesting phenomena could be observed as the di- 
mension of the system increases�9 

NOMENCLATURE 

A : component and concentration of A 
A 0 : constant in Eq. {12) 
B : component and concentration of B 
D : matrix of diffusion coefficients 
DA,DB, Dx, D Y : diffusion coefficients of components 

A,B,X and Y, respectively 
E 
F,G 
h,k 

L 
n l , n  

t 
X 

X 

Y 
Y 
Z 

component and concentration of E 
nonlinear source terms defined in Eq. (20) 
uniform mesh intervals in the space and the 
time, respectively 
length of the system size 
wave numbers in two dimensions 
time 
space coordinate 
component and concentration of X 
space coordinate 
component and concentration of Y 
space coordinate 

G r e e k  Let ters  

~ : aspect ratio (=height/length) 
V 2 : Laplacian operator 

: eigenvalues 
l l  : boundary in two dimensions 

S u p e r s c r i p t s  

j : time leveb 
concentration values obtained from one poin! 
collocation in Table l 

S u b s c r i p t s  

A : component A 
b : boundary values in Eq. (14) 
B : component B 
m : center point in Eq. (14) 
o : thermodynamic solutions 
X : component X 
Y : component Y 
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