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Abstract—A transient analvsis of reaction-diffusion equations associated with the model reaction of Pri-

gogine and Lefever (Brusselator model), has been performed. For low system lengths and for fixed boundary

conditions, steady state sotutions with the luw amplitude are unstable. For zero flux boundary conditions the

muitiplicity of symmetric solutions with the same wave number may exist and the ruajority of them are

unstable. The diffusion of initial components induces relaxation oscitlations in space for fixed as well as zero

flux boundary conditions. The amplitude of the oscillations increases as the diffusion coefficient of the initial

component decreases. For conditions of relaxation escillations the spatial profiles result in single or multiple

propagating fronts.

High system lengths for both zero flux and periodic boundary conditions, may give rise lo a multipeak in-

coherent wave pattern. For periodic houndary conditions the multiplicity of waves has been observed.

Numerical simulation of two-dimensional spatial structures reveals the existance of certain similarities be-

tween the one- and two-dimensional ¢ases.

INTRODUCTION

[t ts widely known that the interaction of reaction
and diffusion in open systems operating far from the
thermodynamic equilibrium gives rise to many inter-
esting phenomena such as spatially homogeneous
periodic solutions, nonhomogeneous periodic solu-
tions, travelling waves, shiock structures, and so forth
[1-31. Prigogine and Nicolis [4] have lermed these
structures arising in reaction-diffusion systems as dis-
sipalive structures. Since the classical paper by Prigo-
gine and Nicolis in 1967 {5], the volume of literature in
this field has been growing steadily. The reaction-dit-
fusict equations coupled with appropriate kinetic ¢x-
pressions have been shown to serve as sin ple models
of a number of biological phenomena and may also
explain similar phenomena m many other fields.

The occurrence of multiple stable solutions for the
Brusselatur chemical network has been analvitically
predicted via the bifurcation theorv and confirmed
numerically by Herschkowitz-Kaufman {17 and Nicolis
et al. 14). For this model they have reported mulliple
stabie synumetric and asviimeltric steady state solu-
tions, homugeneous periodic solutions. and travelin
waves in one dimension while for a two-dimensional
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geometry like a cycle they have obtained rotaling
waves and norhoniogeneocus periedic solutions. Ku-
bicek et al. [6] have numerically constructed a typi-
cal bifurcation diagran for this network by emploving
a continuation algorithn. In their study the primary
hifurcation points were located analvtically while the
space profiles were computed numerically. The calcu-
lated steady state profiles were tested for stability and
asvmptotic behavior. The Brusselator chemical nel-
work has been subjected to many theoretical investi-
gations since il exhibils many inferesling phenoniena
and is easy to analvze because of a single homogene-
ous (thermodynamic) solution. In the majority of pre-
vious studies the initial components A and B are as-
sumed to be maintained uniform throughout the svs-
lem by sonte external mechianism. A realistic descrip-
tion, however, requires the inclusion of diffusion of
these comporents. In this paper, therefore. we con-
sider a maodified Brusselalor model which includes the
diffuston of mitial components. Here we arc going 1o
investigale the stability of computed steady state solu-
tiens via transient analysis, consider the effect of dif-
fusion of initial components on the periodicity of solu-
tions, study the equivalence between one- and two-
dimenstonal geometries, and report on some numeri-
cally observed penodic solutions in one- and two-
space dimensians.
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BRUSSELATOR MODEL IN REACTION-
DIFFUSION SYSTEMS

The “Brusselator” model originally proposed by
Prigogine and Lefever [7], corresponds 1o the follow-
ing trimolecular scheme.

A =X

2X=~Y=3X

B-X =Y

X=E (1

As mentioned earlier, in the majority of previous
studies the concentrations of initial components A and
B have been assumed to be maintained uniform (e.g.
large excess of A and B or infinite diffusion coeffi-
cients, Dy — o and Dg = oo ). In the present investiga-
tion, we include the diffusion of component A but treat
B to be uniform. After neglecting all the reverse reac-
tions and setting the rate constants to unity, following
reaction-diffusion equations are obtained:

JA/ot=-A+D, VA (2)
oX/ot=A+X"Y- B+ 1:X+D,v'X (3}
Y /ot=BX -X*Y ~D,v*Y. (4)

In these equations, ¥ is the Laplacian operator
while Dy and D, are the diffusion coefficients for X and
Y, respectively. The following boundary conditions are
considered:

(a) Fixed boundary conditions

For a one dimensional system:

z=0,L;t>0 :X=X,, Y=Y,. (5)
For a two dimensional geometry:
x=0,1:y=0,1;t>0 . X=X,, Y=Y,. (6]

(b) Zero flux boundary conditions
For a une dimensional system:

z=0,L;t>0:8X/9z=aY/27=0. (7)
For a two dimensional geometry:

x=0,1.0X/0x=3Y/ox=0, [8)
y=0,1:aX/gy=0Y /oy =0 (9)

(c) Periodic boundary conditions

oX oX
=X 22 0= (1)
X=X, 22 0 vl L,
, oY aY .
=Y L, — =-— L] )
Y=Y L;, 27 (01 o7 L 11

For these boundary conditions we have considered
the one-dimensional system only. Further, as is ap-
parent from the physics of the problem this type of

boundary condition does not allow for inflow and out-
flow and hence we cannot consider the diffusion of
component A.

NUMERICAL METHOD OF SOLUTIONS

Egs. (2)-{4) represent a set of coupled nonlinear
parabolic partial differential equations. However Eq.
(2) is separable from Eqgs. (3) and (4) and can be solved
independently to obtain the following steady state
solution in one dimension.

1 :
('osh['ﬁ (z—L/Z.»]
Azi=A, 4 oo 12

cos [%]

Egs. (3) and (4), however, are coupled by the non-
linear source term and this necessitates its solution
numerically. In our numerical calculations, we have
used the Stormer-Numerov finite difference approx-
imation for the space derivative. This method has
large (h', k%) accuracy but needs only three mesh
points in space. The details of this technique with ap-
plications has been described elsewhere [8].

Following extrapolation formula has been used 1o
evaluate the source term at tine grid (j + 152) in the
Crank-Nicholson method.

Xivt=1.5X"-0.5X"" 13
The method of solution also features automatic time
step adjustment which is done un the basis of error be-
tween the predicled and the extrapolaled values tor
the source term. For the case of periodic boundary
conditions, the finite difference scheme introduces an
off diagonal element in the tridiagonal structure and
the fast solution method of Evans [9} has been used.

For two-dimensional problems the conventional
five-point difference scheme requires solution of a
banded matrix structure which is expensive. We have
therefore used the ADI (Allernate direction unplicit)
method to calculate the space profiles tn two dimern-
sions. All the reported calculations have hbeen per-
formed on CDC CYBER 173 machine.

RESULTS AND DISCUSSIONS

The following parameter values have been used in
numerical calculations.

1. Steady state solutions: A =2.0, B=4.6, D, -
0.0016 and D = 0.008. D, equals 0.1 and 0.02 for fixed
and zero flux boundary conditions, respectively. 1. is
reported with each figure.

2. Periodic solutions: A 2.0, Dy - 0.008 and D,
0.004. The variation in L. B and D, is reporied along
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Fig. 1. Spatial profiles for X. ----Steady state solution;
—transient simulation.
Profile l 2 3 4
Length 0.] 017 018 02 0.3

with each figure. Values of parameters other than pre-
sented above are indicated in the description of fig-
ures.
1. Stability of steady state solitions

The bifurcation diagrams which indicate the num-
ber and the nature of solutions of a reactior-diffusion
system are usually constructed from the steady state
analysis of Eqgs. (2)-(4). A typical bifurcation diagram
for the present systemn has been constructed by Hia-
vacek et al. [10]. The solutions obtained from the
steady state analysis need not be stable and, therefore,
their stability must be investigated. For this purpose
we take these steady state solutions, perturh them by
about 1% and study the transient behavior of the svs-
tem. The solution obtained att — co is considered as
the asymptotic solution. Some of the results obtained
are shown in Fig. 1. The dashed lines represent the
solutions calculated from the steady state analysis
while the solid lines represent the corresponding
stable steady state solutions obtained att — co. It can
be ubserved from this figure that unstable symmetric
solutions (dashied curves 1, 2 and 4) give rise to stable
symmetric solutions with a phase shift. The unstable
steady state solutions (dashed lines 1 and 2) form a
part of an isolated branch on the bifurcation diagram
(Fig. 4 in reference {10]) and are very close to the ther-
modynamic solution for fixed boundary conditivns.
Thus the solutions with the low amplitude (or devia-
tions from the thermodynamic branch) seem to be
unstable and the evolution process under these condi-
tions will attract the trajectory to stable high amplitude
solutions. We have further analyzed the stability of

July, 1990

Table 1. Comparison of exact and approximate val-

ues
Profile 1 Profile 2
X X X X
L=0.10 6.00 5.56 1.20 1.34
L=0.17 0.60 0.78 3.00 2.79

these solutions by the one point collocation method
[11]. The advantage of this method is it converts a
system of partial differential equations to ordinary dif-
ferential equations which are easier to deal with than
the original partial differential equations. In this
method, we place one internal point at the center of
the system and write down the finite difference equa-
tions for this point. Since the boundary points are
fixed, this results in a single differential equation,
which can be analyzed easily to obtain approximate
results. On using the Stormer-Numerov finite dif-
ference approximation, the differential equation de-
scribing the center point can be written as:

10 %ﬂ =12 %‘ Xy=2Xp+ X, +10(A+X 2 Y,
~ BH1)X,) (14

where the subscript m denotes the value of the vari-
able at the center puint while subscript b denotes the
value al the boundary. Similar equation can be vb-
tained for Y. Thus, we now have an initial value prob-
lem to integrate. By setting dX,/dt =0 and dY,/dt =
0, une can obtain the steady state values for the center
point by sulving the resulting nonlinear algebraic
equations. On using this approach we obtained the fol-
lowing approximate values for the center point which
are given in Table 1. In this table X indicates the value
obtained by solving the full partial differential equa-
tions while X denotes the value obtained from the one
point collocation. The agreement is satisfactory and
one can use this information as the first approxima-
tion. It was noticed earlier that low amplitude solutions
are unstable for fixed boundary conditions. However,
they have been found to be stable for zero flux bound-
ary conditions (dashed line 3). For zero flux boundary
conditions with L = 0.2 Hlavacek et al. [10] have re-
ported seven steady state profiles. Three of these pro-
files are symmetric with two solutions having the same
wave number but different amplitudes. One of these
solutions is unstable (profile 4) and the stable solution
is observed to be a symmetric solution with a phase
shift. It, therefore, appears that steady solutions with
the same wave number but different amplitudes may
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Fig. 2. Periodic solution profile for X.
L=04B=54 Dy=01.
Profile 1 2 3 4
Time 11.80 12.72 1392 15.15

not be stable at low system lengths. Profile 5, which
represents a high wave number (wave number equal
to three) solution for zero flux boundary conditions is
also unstable and the steady solution at t — oo has
been found to have a wave number of one.
2. Periodic solutions in one dimension

Depending upon the values of the kinetic and dif-
fusion constants and the system size L. the solution
bifurcating from the thermodynamic branch could ei-
ther be a stable steady state or a periodic solution.
Such periodic solutions may give rise to concentration
waves. Pismen [12] in describing the bifurcating
waves has proposed that in a one-dimensional systens,
depending upon initial conditions, the periodic solu-
tion may either be a propagating wave in an infinite
system or a standing wave for a finite system, an
ordered combination of standing waves ur an incoher-
ent pattern. Nicolis et al. 3] have analytically pre-
dicted and numerically observed the existence of
standing and travelling waves for the Brusselator
model.

These general results obtained from the bifurcation
theory may not be applicable when diffusion of initial
components is also considered. Since trivial solutions
(Xo= A and Y, = B/A) for the present case do not exist,
it also excludes the possibility of homogeneous pertod-
ic solutions. In such a case, the first bifurcating sulu-
tion, therefore, is space dependent. This solution 1s
symmetrical and represents a standing wave. For the
chosen parameters (A = 2.0, B =5.8, D, = 0.008) the
so.ution at low bifurcation lengths (L up to 0.6) was
always symmetrical for fixed boundary conditions,
Various initial non-uniform profiles were tested tu see
whether asymmetric solutions exist. However, in each

-

0 4 8 12 16 20 24 28 32 36 40
Time
Fig. 3. Oscillations of the center point.

L =06, 8 =54, - Dy—o0, — Dy = 0.02.

case, after an initial transient period the solution
always evolved to a symmetric standing wave. A typi-
cal solution is shown in Fig. 2. An interesting observa-
tion was made while studying the effect of diffusion of
component A on periodic solutions. It was observed
that the diffusion of component A alters the period as
well as the nature of oscillations. A plot of oscillations
at the center point of the system is shown in Fig. 3.
For the sake of comparison, the case with constant
AD, - ) is also shown on the same figure. It is ob-
served from this figure that when D,— oo, the oscil-
lations are fairly regular. However, with the diffusion
of component A these regular uscillations change to a
period of fairly low and uniform concentration of X
followed by a steep spike. The period elapsed between
two successive spikes is also the same. This effect
seems to be quite similar to the concentration oscil-
lation observec for the Belousov-Zhabotinsky reaction
[13]. 1t, therefore, appears that the nonuniform distri-
bution of component A gives rise to mulliple time
scales in the system. During the period A-B o~ A8 i
Fig. 3, the rate of change of the component X is very
low and the svstent appears o be almost quiescent.
This period of uniformity is followed by a period of
rapid transformations which involves steep time gradi-
ents. Such type of phenvmena has been termed as
relaxation oscillations. Herschkowitz-Kaufman and
Nicolis [14] have also reported relaxation oscillations
for this mode: but they have analyzed only fixed
boundary cunditions. The transient space profiles dur-
ing the period B-A" are shown in Fig. 4(a) while Fig.
4(b) depicts the transient profiles in the region A-B
These figures reveal that during the short time scale
propagating frunts are observed which move from the
boundarv towards the center, collide and ultimately
change (v a standing wave paltern, which is carried in-
to the quiescent region A"-B” as shown in Fig. 4(b). In
order 1o explain the existence uf the propagating fronis
in the short time interval, we can make use of the the-
ory of propagation of fronts and discontinuity by Or-
tuleva and Ross [15]. According to this theury propa-
gating fronts are observed for systems with kinetics on

Korean J. Ch. E. (Vol. 7, No. 3)
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Fig. 4. Propagating fronts for fixed boundary condi-

tions.

L=06B-54 Dy=002

Profite 1 2 3 4 3 [} 7
Time 20.25 21.66 25.56 29.40 35.76 36.06 36.25

multiple time scales and possessing multiple homo-
geneous stationary states. Since these phenomena are
observed with nonuniform distribution of component
A, it is suspected that diffusion of A may cause the
introduction of multiple pseudo stationary states al-
though for the Brusselator model with constant A only
one stationary homogeneous state exists. Irt urder Lo
explain the existence of multiple pseudo stativnary
homogeneous solutions for the Brusselator model. we
make use of Fig. 3 and attenmpt the following explana-
tion. From this figure it can be inferred that in the
period A-B the concentration al the center point almosl
approaches zero. Since for a long time the concentra-
tion profiles remain flat in the central portion of the
system. the effect of diffusion here can be neglected.
In this case vur equations become

dX/dt=A+X*Y - B+1X (15
and
dY /dt=BX -X?Y. 16

In order to obtair: the homogeneovus solulions we set
dX/dt =dY/dt =0 and solve the resulting algebraic
equations which are given as

A+X’Y - B+1DX=0 1%
and
BX - X*Y=0. (18)

If X=0, to satisfy Eq. (17), A= 0. If we take a value of
D,=0.002 and L = 0.4, A at the center Z0.02. Thesc
X =0 satisfies Eq. (17). Now from Eq. (18} one can ob-
tain X =0 and X = B/Y as the solutions. The root X

B/Y further shows that since B is constant, an increase
in X i« acconipanied by a corresponding decrease it Y
which is observed in the solution of full partial differ-
ential equations for this case. These multiple pseude-
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Fig. 5. Oscillations of the center point. - Zero flux
boundary conditions; — fixed boundary con-

ditions.

Profile 1 2 3 4 5
L 0.4 0.4 1.0 06 06
B 54 5.4 54 54 54

D4 0.001 0.0002 0.02 0.02 0.02

stationary states probably give rise to the propagating
fronts which are shown in Fig. 4(b). To investigate the
effect of diffusion of A on the relaxation oscillations,
D, was changed from 0.1 to 0.0002 for zero flux as
well as fixed boundary conditions and the observed
uscillations have been reported in Fig. 5. The dashed
lines in this figure show oscillations for zero flux
boundary cunditions while the solid lines are for fixed
houndary conditions. This plot reveals that for the
same parameters, the oscillation period for fixed
boundary conditions is almuost twice than thal for zero
flux boundary conditions. Also, the comparison of pro-
files 1 and 2 indicates that as D decreases, the period
of oscillalions as well as the amplitude of oscillations
increases. However. in all cases, the nature of the
space profiles remains the same. It was also noticed
that for the chuser parameters fixed boundary condi-
tions always resulted in symmeltrical structures while
for zeru flux boundary conditions asymmnielric space
profiles are pussibie. A typical transient profile for zero
flux boundary conditions, illustrating the development
of a propagating front fron a standing wave is shown
in Fig. 6. Another observation made in this study indi-
cates thal when Dy oo, fur the systems of low size all
space points fall on the same limit cycle. However.
when D, assumes low values (say 0.002), twa distinet
but interwoven liniil cycles are observed for the center
and the boundary points. If we extrapulate the above
mentioned arguments, it can be said that when D,
assumes very low values, the development of shuck
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>
(a) z (b)
Fig. 6. Propagating fronts for zero flux boundary
conditions.
L =06, B =54 D, =002
(@ Pwfle 1 2 3 4 5
Time 0.1 46 582 6.03 6.13
{b) Profile ] 2 3 4 3 6
Time 735 7.62 782 802 807 821
>
0.05F A B__A ) 2] A
(.02 - R
0.01 | E— 1 L L | S [N NN S —

2 o6 8 10 12 14 16 18 20
Time
Fig. 7. Oscillations of the center point.
A=17B:428 110 Dy=001,Dy - 00,0,
0.02.

structures from seemingly quiescent medium might be
observed. As mentioned earlier, a nonunitorm dislvi-
bution of the component A causes simultaneous pro-
pagalion of fronts either boundaries lowards the cen-
ter. We have also calculated for a ditferent set of par-
ameters and initial conditions, a different type of relax-
ation oscillations where the amplitude of oscillations
for the cetner point is quite small as shown in Fig. 7.
For this case we observed a single propagating front
moving from left to the center for a short period during
the phase A-B. which is shown in Fig. 8(a), while an
identical front moves from the right to the center dur-
ing the phase B-A” for another short interval as
depicted in Fig. 8(b). These fronts, however, do not
reach the center but disappear in between . It was also
noticed that an increase in the system dimension ur a
decrease in diffusion coefficients increased the phase
difference between various spatial points. As can be
expected, a nonuniform distribution of the component
A affects stability and the reported bifurcation analy-
sis ¢f the Brusselator model by Herschkowitz-Kaufman
(1] is not applicable here. The bifurcation theory for

5.90
4.44 Profile 1 2 3 4
Time 793 799 809 815
296+
==
1.48
0 7 1.0
(a)
590 ]
144}
Profile 1 2 3 i
Time K88 893 398 903
= 296 F 1
148
0 F%\
0 7 1.0
{b)

Fig. 8. Single propagating front for zero flux bound-
ary conditions.
Parameters same as for Fig. 7.

D, -» co predicts a homogeneous stable solution for the
parameters A =20, B=54, L =04, D, = 0.008 and
Dy = 0.004 for constant boundary conditions. How-
ever, when D, = 0.1, the same parameters yield a pe-
rindic solution with standing wave characteristics. Qur
one puint coliocation approach did show this stability
change and the solution of the corresponding vrdinary
differential equations showed oscillations for the cen-
ter point.

Our nurnerical experiments for the periodic bound-
ary conditions resulted in a travelling wave and multi-
plicity of standing waves. Fig. 9 illustrates a typical two
standing waves pattern. It can be easily observed that
each is a nonlinear wave and the two waves are oul uf
phase with each other. The duraticn for which each
wave 1s observed during a peried, however, is not the
sane. For high values of L or low diffusion coefficients,
we have observed periodic solutions of increasing
complexity. A typical periodic solution is shown in Fig.
10 which describes a multipeak standing wave with in-
coherent pattern. In general, it has been noticed that
muitipeak periodic solutions are possibie only at high
system lengths. Alsu the periodic solutions for zero
flux or periodic boundary conditions at high system
lengths have similar characteristics.

Korean J. Ch. E. (Vol. 7, Ne. 3)
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Fig. 9. Two standing wave patterns for periodic
boundary conditions.

A=20,B=354, Dy=0.008 Dy=0.004, L =2.0.
Profile 1 2 3 4 5
Time 274 344 478 558 6.24

|
0 0.5 |
z

Fig. 10. Incoherent wave pattern for zero flux
boundary conditions.

A=17,B=428 L=100, Dy=1.0 Dy=0.0.
Profile 1 2 3 4 5

Time 01 12 257 282 348

3. Dissipative structures in two-dimensions
(rectangular geometry)

The theory of linear stability analysis indicates that
the bifurcation from the homogeneous stable solution
takes place when at least one eigenvatue of the matrix
[A-A,D] has a positive real part. The matrix A for the
Brusselator model can be expressed as

oF oF
oX oY

A= (19
9G a6
20X oY

July, 1990

where F and G are given as

F=A+X'Y- B+1)X and G=BX-X*Y. {0

All the required derivatives are evaluated at Xyand Y,
which are the solutions to F = 0, G = 0. The matrix D
is a diagonal matrix of the diffusion coefficients and A,
are the eigenvalues of the following scalar equation
[16]:

VX +AX=0 for XeQ. 21

For the one-dimensional model A, are given by n’z%
L2 for both zero flux as well as fixed boundary condi-
tions where n=0,1,2,- and n=1,2,-- for zero flux
and fixed boundary conditions, respectively. For the
two-dimensional rectangular geometry A, are given by

An=1" (m*+&*n?) /L? 22

where § is the aspect ratio (=height/length) and m
and n have the same values as n for the one-dimen-
sional system. From the analysis mentioned above,
one clearly observes that when §=1 and m =0, the
bifurcation pattern of one- and two-dimensional sys-
tems is the same. In other words, the parameter values
for which the one-dimensional systemn shows bifur-
cation will also cause the bifurcation for the two-di-
mensional case. In our numerical calculations we
have, therefore, used the same parameters as those us-
ed for one-dimensional calculations. One can further
observe that if in the reaction-diffusion equation

2 2

2 _rn,[ 2K+ 2]
ot ox ay

one of the second derivatives is set to zero, the system
will be reduced to the one-dimensional description. In
such a case, all one-dimensional steady state solutions
will be the solutions in two dimensions with no gradi-
ent along x and y direction depending upon which-
ever second derivative is set to zero. We have tested
this observation for the zero flux boundary condition.
For L =0.3 and &§=1, we have calculated a steady
state solution in one dimension and constructed a two-
dimensional solution starting from it. The calculated
steady state solution and the corresponding one-di-
mensional solution are shown in Fig. 11. For this case
we also calculated some additional steady state solu-
tions in two dimensions by knowing the one-dimen-
sional profiles. Variation of the aspect ratio does not af-
fect the qualitative as well as quantitative nature of
these solutions as is apparent from the analysis. It
should, however, be noticed here that the above men-
tioned analysis applies only to the case when the com-
ponent A is assumed to be constant (D,— o). When A
is distributed noruniformly, the resulting steady state

(23
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(0.3<0.1)

Fig. 11. Two dimensional analogue of one dimen-

sional space structure.
L=(0.3x0.1).

M l':‘_’_‘_—"_z_:j

0.2x0.1) (0.1x0.1)
(@) (b)
Fig. 12. Symmetric and asymmetric space struc-
tures in two dimensions.
@ L =(0.2x0.1); (b) L=(0.1 x0.1).

(0.2x0.1)
(a) (b)
Fig. 13. Composing solutions in two dimensions.
(@ L=002x01); (b)L =(0.2x0.2;.

(0.2~0.2)

solutions are qualitatively similar but quantitatively
different. The two-dimensional soluticns obtained
from the one-dimensional profiles are termed as 1-D
analogues. Apart from these 1-D analogues we have
also calculated some other symmetric as well as asym-
metric solutions. Sume of these are reported in Fig. 12.
The reported asymmetric solutions are found lo be
mirror image of one another. Further, by using the
syrmetric properties, we can obtain four steady-states
from one solution. Another interesting property ob-
served for zero flux boundary conditions was that of
cornposing solutions for systems of high size knowing
the steady state solutions for the low size. A typical

Fig. 14. Two dimensional analogue of homogeneous
periodic solution.
L =(0.2x0.1).

t = 10.66

Fig. 15. Two dimensional analogue of a standing
wave,
L =(1.0x0.5)

result is shown in Fig. 13. Such composing of solutions
in one dimension has already been discussed by Ku-
bicek et al. [6]. As mentioned earlier since all one-
dimensional solutions are solutions in two dimensions
under certain conditions, we could calculate the ana-
logue of one-dimensional periodic solutions also in
two dimensions. The two-dimensional analogue of a
homogeneous periodic solution is a plane which goes
up and down and is shown in Fig. 14 while the ana-
logue of a standing wave is a vibrating plane which
moves up and down as shown in Fig. 15. The calcula-

Korean J. Ch. E. (Vol. 7, No. 3)
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t=4.58

Fig. 16. Antisymmetric periodic structures.
L=(1.6x1.0).

tions also showed that the period of oscillation for the
one- and two-dimensional cases is the same. Another
interesting property observed for the periodic solutions
for high values of L(=1.6x1.0) and for zero flux
boundary conditions was antisymmetry of the periodic
structure about the central plane. Our calculations
showed that the structure of the solution in the XY
plane is diametrically opposite to that about the plane
Y =Y/2. In other words, if we bisect the solution at the
center parallel to X axis and rotate one part by =, the
resulting structure will be exactly equivalent to the
remaining portion. A typical periodic solution is
shown in Fig. 16 which illustrates this point.

CONCLUSIONS

As noticed earlier all solution profiles obtained by
the steady state analysis are not stable and a transient
approach is required to calculate the asymptotic pro-
perties. It is observed that low amplitude (or small
deviations from the thermodynamic branch) solutions
are not stable for fixed boundary condilions while
same wave number multiple solutions with different
amplitudes are unstable for zero flux boundary condi-
tions. A non-uniform distribution of the component A
alters the bifurcation pattern and the homogeneous
stable solution gives rise to a periodic solution. Alsc,
since diffusion of the component A does no: admit triv-
ial solution for the Brusselator model, the primary
bifurcating periodic solution itself is space-dependenl.
It appears that an inclusion of non-unifurm A can
result in multiple time scales in the system and relaxa-
tion type of oscillations occur. It has been shown that
propagating fronts observed in this case probably oc-

July, 1990

cur because of multiplicity of homogeneous solutions.
Low diffusion coefficients cause high wave number
periodic solutions which are of incoherent pattern.
The equivalence of one- and two-dimensional struc-
tures can be explained on the basis of lateral uniformi-
ty in either directions. It is also noticed that additional
interesting phenomena could be observed as the di-
mension of the system increases.

NOMENCLATURE
A : component and concentration of A
A, : constantin Eq. (12)
B : component and concentration of B
D : matrix of diffusion coefficients

D,DgDy.Dy o diffusion coefficients of components
AB,X and Y, respectively

E : component and concentration of E

F.G : nonlinear source terms defined in Eq. (20)

h,k : uniform mesh intervals in the space and the

time, respectively

length of the system size

wave numbers in two dimensions

time

space coordinate

component and concentration of X

space coordinate

component and concentration of Y

space coordinate

N o< X% T
S

Greek Letters

& . aspect ratio ( =height/length)

v o Laplacian operator

A . eigenvalues

1 : boundary in two dimensions
Superscripts

j ¢ time level

— @ concentration values obtained from one point
collocation in Table 1

Subscripts

A component A

b boundary values in Eq. (14)
B component B

m center point in Eq. (14)

0 thermodynamic solutions
X component X

Y component Y
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